Journal of Applied Hydrography

Forschungsschiff DOI: 10.23784/HN132-07

Das schwimmende Labor

Das neue Hereon-Forschungsschiff *CORIOLIS* ist Innovationsplattform, Digitalisierungsprojekt sowie Botschafter für Klima, Küste und Technologie

Ein Beitrag von CHRISTOPH WÖHRLE

Die *CORIOLIS* ist das neue Forschungsschiff des Helmholtz-Zentrums Hereon. Mit Hybridantrieb aus Wasserstoff und Diesel, innovativer Membrantechnik und digitaler Ausstattung gilt sie als umweltfreundliches Hightech-Labor. Für 18 Millionen Euro gebaut, untersucht sie unter anderem Küsten- und Klimaveränderungen, Mikroplastik, Nährstoffkreisläufe und Auswirkungen der Offshore-Windkraft – ein nachhaltiger Meilenstein moderner Meeresforschung.

Helmholtz-Zentrum Hereon | CORIOLIS | Forschungsschiff | Hybridantrieb Helmholtz-Zentrum Hereon | CORIOLIS | research vessel | hybrid propulsion

The CORIOLIS is the new research vessel of the Helmholtz-Zentrum Hereon. With hybrid propulsion powered by hydrogen and diesel, innovative membrane technology and digital equipment, it is considered an environmentally friendly high-tech laboratory. Built at a cost of €18 million, it investigates coastal and climate change, microplastics, nutrient cycles and the effects of offshore wind power, among other things – a sustainable milestone in modern marine research.

Autor

Christoph Wöhrle ist Wissenschaftsredakteur am Helmholtz-Zentrum Hereon in Geesthacht.

christoph.woehrle@hereon.de

Sie ist jetzt schon ein absoluter Klassenprimus in der maritimen Schule: die *CORIOLIS*. Das neue Forschungsschiff des Helmholtz-Zentrums Hereon – Ende vergangenen Jahres wurde es getauft – ist schwimmendes Labor und Trendsetter zugleich.

Die *CORIOLIS* vereint Innovationen, wie einen hybriden Antrieb aus Wasserstoff und Diesel. Sie verringert den Ausstoß von Stickoxiden durch Membranen. Zudem ist sie »durchdigitalisiert« und wird helfen, Erkenntnisse aus Wasser- und Sedimentproben von Flüssen und – vor allem den deutschen – Küsten zu ziehen.

Gebaut wurde das Forschungsschiff für rund 18 Millionen Euro auf der Hitzler Werft in Lauenburg an der Elbe. Mit öffentlichen Mitteln, das Gros kam vom Bund, entworfen vom Planungsbüro Technolog in Hamburg. Der Prozess von der Konstruktion bis zur Taufe im November 2024 dauerte gerade einmal zwei Jahre.

Einen Tiefgang von knapp 1,9 Metern und die maximale Geschwindigkeit von 12 Knoten komplettiert das Schiff mit einer Antriebsleistung von 720 kW. Zwei Mann Besatzung und bis zu zwölf Wissenschaftlerinnen und Wissenschaftler teilen sich 30 Meter Länge und 8 Meter Breite. Die Forschenden schlafen aber nicht auf dem Schiff, denn weiter als 100 Seemeilen wird es in der Regel nicht in Richtung offenes Meer hinausfahren.

Beim Rundgang über das Deck zeigt Dr. Jens

Meywerk die Finessen. Er ist der Mann, der die Fäden zusammenhält. »Hier ist einer der drei Anker montiert. Außer mit ihnen ist das Schiff mit einer Teleskopstange fixierbar, einem sogenannten Ankerpfahl, mit dem man auf jedem Grund festmachen kann«, sagt der Hereon-Projektleiter, während er über die Planken läuft. Man merkt ihm sofort den technischen Sachverstand an, die Detailverliebtheit und auch den Stolz auf das nagelneue Schiff.

Die CORIOLIS ist nach dem französischen Entdecker Gaspard Gustave de Coriolis der Corioliskraft benannt. Jene ist dafür verantwortlich, dass sich Luft- und Wassermassen nicht einfach geradlinig von hohem zu niedrigem Luftdruck bewegen, sondern in ihrer Bahn in eine kreisförmige Bewegung abgelenkt werden, wie das bei großräumigen Wettergebilden wie Tief- und Hochdruckwirbeln sowie Ozeanwirbeln zu sehen ist. Für die Namensfindung wurde ein Wettbewerb unter den Mitarbeitenden des Hereons ausgelobt. Am Ende gewann »Coriolis« mit Abstand.

Das Schiff stärkt und bemüht viele der Disziplinen des Hereons; hier kommen Küsten- und Klimaforschung zusammen, werden flankiert durch die Materialwissenschaft und Polymerforschung in Form von Wasserstoffantrieb und Membranen.

Das schwimmende Labor analysiert unter anderem, welche Nähr- und Schadstoffe von den

Flüssen ins Meer transportiert werden. Wie ist der Sauerstoff- und der Stickstoffgehalt? Wie der Wert für Fluoreszenz (spontane Emission von Licht kurz nach der Anregung eines Materials durch eine Lichtquelle)? Welche Mikroorganismen, Algen und Abfälle wie Fischkot schwimmen darin?

Wie verhält es sich mit dem »Marine Snow« als optisches Phänomen, bei dem Partikel kontinuierlich von oberflächennahen Schichten des Wassers bis in die Tiefsee absinken? Aber auch die Ausbreitung von Mikroplastik im Meer und in den Flüssen wird untersucht.

Im Mittellauf der Elbe kommt es ferner immer wieder zu einem Wachstum von Mikroalgen. Im weiteren Verlauf des Flusses sterben jene dann ab und werden von Bakterien abgebaut, was Sauerstoff verbraucht. Solche Veränderungen wollen die Forschenden besser verstehen, um Lösungsvorschläge und Empfehlungen an die Politik zu erarbeiten, die Auswirkungen des Klimawandels immer im Blick.

Denn kleinste Veränderungen, etwa durch die Parameter Landwirtschaft, Fischerei und Schifffahrt können die Ökosysteme der Küsten und Flüsse dramatisch beeinflussen. Weniger Sauerstoff heißt weniger Fisch. Weniger Fisch heißt weniger Vögel. Ein umfassender Einsatz von Schleppnetzen verändert die Sedimente.

Und: Wie beeinflusst all dies die »marine Kohlenstoffpumpe« und somit den Klimawandel ganz direkt? Der erste Begriff beschreibt, dass ein Teil der Biomasse, die pflanzliches Plankton an der Meeresoberfläche durch Photosynthese bildet, in Form kleiner, kohlenstoffhaltiger Partikel absinkt. Dadurch wird das CO₂ für lange Zeit in der Tiefsee gespeichert.

»Wir werden auch überprüfen, wie sich die Offshore-Windkraft auf Umwelt und Ökosysteme auswirkt«, sagt Meywerk. Umweltchemiker messen dann etwa, wie stark die Emissionen durch Korrosionsschutz ausfallen, die das Meer von den gestrichenen Fundamenten der Windräder abträgt – oder sogar der Abrieb der Rotoren ist messbar.

Modellierer schauen zudem mit gewonnenen Daten darauf, wie sich Windräder gegenseitig den Wind wegnehmen und durch Wirbelschleppen Temperatur und Strömung an der Meeresoberfläche beeinflussen. (Wirbelschleppen, man kennt den Begriff aus der Luftfahrt, sind im Meer turbulente Wasserwirbel, die in den Nachläufen von Offshore-Windparks entstehen und die Schichtung sowie die Strömung des Wassers und damit auch die Trübung beeinflussen.)

Der Weg von der Idee zur Innovation führt – wie überall am Hereon – auch auf der *CORIOLIS* über ein kontinuierliches Wechselspiel zwischen Experimenten, Modellierung und künstlicher Intelligenz bis hin zu Digitalen Zwillingen, die die vielfältigen Parameter von Klima und Küste oder der Biologie des Menschen im Rechner abbilden.

So werden komplexe Systeme ganz im Sinne der Zentrumsstrategie greifbar. Sogar vom – wahrhaft komplexen – System der *CORIOLIS* selbst soll ein Digitaler Zwilling entstehen.

»Die exakten Zeiten für die ersten Expeditionen stehen noch nicht fest. Zuerst laufen noch verschiedene Tests. Aber ab 2026 geht es los«, sagt Jens Meywerk. 225 Tage im Jahr wird die *CORIOLIS* im Einsatz sein.

Alle umweltrelevanten Forschungsdaten, die während der Fahrt ermittelt werden, könnten in Echtzeit abgerufen oder direkt mit anderen Schif-

Abb. 1: Testfahrt der *CORIOLIS* auf der Nordsee

HN 132 — 10/2025 57

ADD. 2: DIE CORIOLIS IIII Haieri

fen und Landstationen geteilt werden. Somit sei das Schiff, das über 100 Messwerte aufzeichnen und übertragen kann, auch ein Meilenstein der Digitalisierung.

Beim Rundgang zeigt Meywerk auch die noch fast frisch gestrichene, fertige Brücke und die Messe. Von manchen Decken hingen bis vor kurzem in der Bauzeit noch viele Strom- und Datenkabel herab. 34 Kilometer Kabel verschiedenster Art und drei Kilometer Rohrleitungen wurden eingezogen, 150 Tonnen Stahl sind verbaut, alles in allem sind, die verschiedensten Gewerke inbegriffen, rund 250 Mitarbeitende am Bau des Schiffs beteiligt gewesen.

Ganz wichtig bei modernen Forschungsobjekten: Auf das Mikrosystem eines einzelnen Schiffes wirken sich globale Fragestellungen aus. Rund 90 Prozent des Welthandels werden auf dem Seeweg abgewickelt. Täglich verkehren auf den Meeren an die 100000 Schiffe. Der Schiffsverkehr insgesamt ist für fast drei Prozent der globalen CO₂-Emissionen verantwortlich, Tendenz steigend. Die

Internationale Seeschifffahrtsorganisation der Vereinten Nationen hat deshalb 2023 beschlossen, bis 2050 die Klimaneutralität erreichen zu wollen. Das setzt Reeder auf allen Kontinenten unter Druck, klimaneutrale Antriebe zu finden. Die ersten haben bereits reagiert. So stellte Hapag Lloyd die *Berlin Express* in Dienst, einen Containergiganten, der mit LNG – also Flüssiggas – betrieben wird. Was den CO₂-Ausstoß immerhin um 30 Prozent reduziert.

Doch das ist nicht genug, dachten sich die »Geburtshelfer« des Hereon-Forschungsschiffs. Auf der *CORIOLIS* ist der Gedanke der Nachhaltigkeit weitergedacht worden. Das Prunkstück ist der innovative Antrieb, bestehend aus elektrischen Motoren, die auf verschiedene Energiequellen zugreifen. Eine davon: die Brennstoffzelle, die auf ein speziell am Hereon entwickeltes Tanksystem zugreift, in dem Wasserstoff in Metallhydriden gespeichert wird.

Wasserstoff ist das häufigste Element im Universum. Wird die Energie genutzt, hinterlässt es kein umweltschädliches CO₂ oder Methan, sondern ausschließlich Wasserdampf als »Abgas«. Eine Brennstoffzelle wandelt Wasserstoff schadstofffrei in Strom für den Betrieb der Motoren und anderer elektrischen Verbraucher um. Gegenüber Dieselkraftstoff hat Wasserstoff mit 33,33 kWh/kg eine etwa dreimal höhere Energiedichte.

Der gewonnene Strom wird auf einen sogenannten Gleichstromzwischenkreis gespeist und lädt darüber entweder eine Batterie oder wird direkt für Bordstrom oder den Antrieb des Schiffes genutzt.

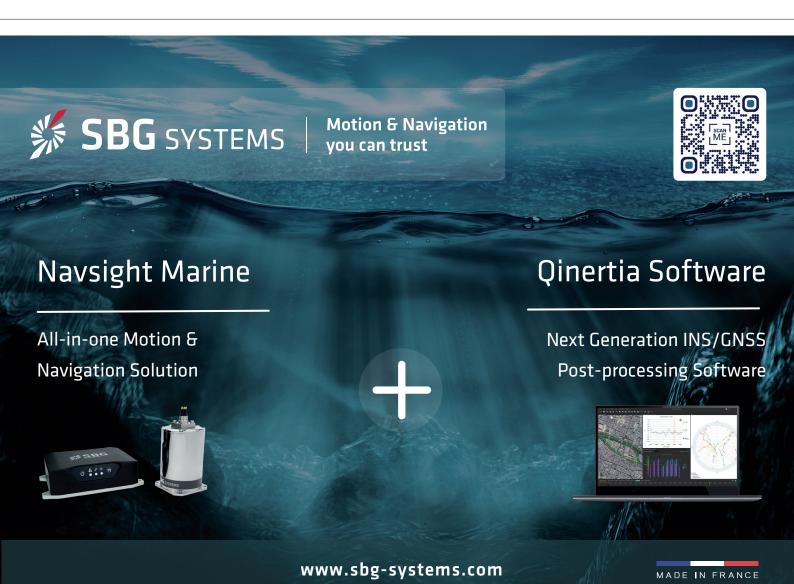
Metallhydride sind gut recycelbar und als Speicherelement besonders zukunftsträchtig. Wie ein Schwamm werden die Wasserstoffatome »aufgesaugt«, also chemisch im Metallpulver oder -gitter gebunden. Um das Gewicht so gering wie möglich zu halten, suchen die Forschenden nach leichten und effizienten Materialkombinationen.

Mit weniger Druck und moderaten Temperaturen wird die Speicherung einfacher und günsti-

CORIOLIS	
Länge / Breite / Tiefgang	29,90 m / 8,00 m / 1,90 m
Besatzung / Wissenschaftler	2 (+ 1) / 12
Laborfläche / Fläche Arbeitsdeck	47 m ² / 70 m ²
Einsatzbereich	Küstenfahrt, international 100 Seemeilen
Geschwindigkeit	maximal 12 Knoten
Antriebsleistung	720 kW
Einsatztage im Jahr	circa 225
Brennstoffzellenleistung	100 kW
Metallhydridtank	30 kg Wasserstoff- kapazität
Batterie	140 kWh Kapazität, 100 kw Leistung

ger als bei herkömmlichen Hochdrucktanks (die müssen oft 700 bar aushalten) oder Flüssigwasserstofftanks (sie müssen mitunter auf minus 253 °C heruntergekühlt sein). Für die Speicherung wird je nach Metallhydrid nur noch ein Druck von etwa 70 bar benötigt, das Volumen verringert sich somit deutlich.

In Verbindung mit der Brennstoffzelle wird, durch Nutzung der Abwärme, keine zusätzliche Energie zur Freisetzung des Wasserstoffs aus dem Metallhydrid benötigt. Zwei bis acht Stunden, je nach Schiffsgeschwindigkeit, kann das Schiff mit einer Tankfüllung Wasserstoff (30 Kilogramm) fahren.


Auch der Einsatz von Membranen ist neu. CO₂ oder Schadstoffe aus Emissionsströmen abzutrennen oder Wasser aufzubereiten, sind Aufgaben, die in der Hereon-Forschung und für eine Industriegesellschaft der Zukunft essenziell sind. Denn Wassermangel, Klimawandel und Energiewende – bei diesen Herausforderungen spielen Stofftrennungen eine zentrale Rolle – brachten in der Forschung neue Membranverfahren sowohl

für flüssige als auch gasförmige Anwendungen hervor und folgen einem ganzheitlichen Ansatz. Sie minimieren auf der *CORIOLIS* Stickoxide in der Abgasluft, wenn der Dieselantrieb genutzt wird. Gerade in Häfen ist die Abgasluft problematisch, wenn es keinen Landstromanschluss gibt.

Die Hereon-Membranen konzentrieren sich auf die im Motor verbrannte Luft. Die Idee: Ein Modul trennt einen Teil des Sauerstoffs aus der Verbrennungsluft ab, indem es Sauerstoff besser hindurchströmen lässt als Stickstoff. Damit senkt sie den Sauerstoffgehalt ab, was zur Folge hat, dass die Temperatur sinkt und damit auch der Stickstoffausstoß – um satte 80 Prozent.

Auch für den abgeleiteten Gasstrom soll es Lösungen geben. Da er mehr Sauerstoff enthält als normale Luft, suchen die Konstrukteure derzeit nach Möglichkeiten, ihn sinnvoll in das Gas- und Energiesystem einzukoppeln. Der Sauerstoff könnte für die Brennstoffzelle verwendet werden.

Am Ende ist ein ganzes Forschungszentrum sehr froh, über den neuen schwimmenden »Kollegen«. Ein Schiff, das den Unterschied macht. //

