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1 Introduction
Precise 3D mapping of inland running water bod-
ies is of high importance for flood risk modelling 

(Tsakiris 2014), habitat mapping (Naura et al. 2016; 
Hauer et al. 2009), monitoring of fluvial erosion 
and sediment transport (Gkiatas et al. 2022; Kramer 

Mapping and monitoring of inland water bodies is of high scientific, economic and 
ecological importance. Depending on the size, depth and turbidity of the river, either 
acoustic or optical methods are suited for the acquisition of dense and accurate 3D 
bathymetry data. For relatively small, clear and shallow alpine rivers, optical methods 
are the first choice. Either images or laser scans are taken from crewed or uncrewed 
platforms to map the river bottom. For more than a decade, a near natural reach of the 
pre-alpine Pielach River in eastern Austria has been repeatedly surveyed with laser and 
photo bathymetry. In this contribution, we present an open benchmark dataset (DOI: 
10.48436/taz19-r6618), which was captured in October 2024 following a devastating 
flood event in September 2024 with multicopter drones. We present the measurement 
campaign including airborne and terrestrial surveys and the data processing steps. Next 
to standard processing, we introduce new and innovative image-based bathymetry 
techniques for rivers with dynamic, wavy water surfaces. We show that image sequenc-
es can be used to mitigate the water surface dynamics; synchronous oblique drone 
images can be used to reconstruct the undulating water surface; and Neural Radiance 
Fields are an alternative option to classical methods for mapping bathymetry. 
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Die Kartierung und Überwachung von Binnengewässern ist von großer wissenschaftlicher, wirtschaftlicher 
und ökologischer Bedeutung. Je nach Größe, Tiefe und Trübung des Flusses eignen sich entweder akus-
tische oder optische Methoden für die Erfassung dichter und genauer 3D-Bathymetriedaten. Für relativ 
kleine, klare und flache Alpenflüsse sind optische Methoden die erste Wahl. Von bemannten oder unbe-
mannten Plattformen aus werden entweder Bilder oder Laserscans aufgenommen, um die Flusssohle zu 
kartieren. Seit mehr als einem Jahrzehnt wurde ein naturnaher Abschnitt der voralpinen Pielach in Ost-
österreich wiederholt mit Laser- und Fotobathymetrie vermessen. In diesem Beitrag stellen wir einen offe-
nen Benchmark-Datensatz vor (DOI: 10.48436/taz19-r6618), der im Oktober 2024 nach einem verheerenden 
Hochwasserereignis im September 2024 mit Multikopter-Drohnen aufgenommen wurde. Wir stellen die 
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den können, um die Dynamik der Wasseroberfläche abzuschwächen; dass synchrone, schräge Drohnenbil-
der verwendet werden können, um die wellenförmige Wasseroberfläche zu rekonstruieren; und dass Neu-
ral Radiance Fields eine Alternative zu klassischen Methoden für die Kartierung der Bathymetrie darstellen.
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Stajnko et al. 2023) and many other applications. 
This concerns both the shape of the underwater 
topography and submerged objects such as mac-
rophytes (Rhomberg-Kauert et al. 2024; Wagner et 
al. 2024) and deadwood (Zigann et al. 2023). Larger 
navigable rivers often show a substantial load of 
suspended sediment, making the water turbid. 
For those inland water bodies, Sound Navigation 
and Ranging (SONAR) based on single-beam or 
multibeam echo sounding is often the only op-
tion for acquiring 3D riverbed data (Lurton 2002). 
However, for moderately deep and clear alpine 
rivers, active and passive optical methods such 
as laser bathymetry (Philpot 2019; Guenther et al. 
2000) and photo bathymetry (Mulsow et al. 2024; 
Maas 2015; Mandlburger 2019) are often more ap-
plicable compared to SONAR-based data acquisi-
tion, because many small to medium-sized rivers 
are not continuously navigable for survey vessels 
and the application of small uncrewed surface ve-
hicles is threaded by currents. However, the com-
plex wavy water surface poses problems for both 
image- and laser-based surveys (Sardemann et al. 
2024; Mulsow et al. 2024), especially when carried 
out by uncrewed aerial vehicles (UAV).

Although low flying altitudes enable high spatial 
resolution, with typical laser footprint diameters of 
less than a decimetre and image ground sampling 
distances even in the centimetre range, the high-
er resolution also comes with the downside of a 
higher sensitivity with respect to local water sur-
face inclination. For photo bathymetry, this com-
plicates the derivation of underwater tie points 
(Gueguen and Mandlburger 2024), which are nec-
essary for image orientation in the multi-media 
case (Mulsow 2010), and later also the derivation 
of dense underwater point clouds (Mandlburger 
2019). Laser bathymetry is less sensitive in this re-
spect, as green laser pulses are also reflected to a 
certain extent from the water surface (Guenther et 
al. 2000) and, in the best case, provide both surface 
and bottom information for a single emitted laser 
pulse. But also for laser bathymetry, the higher res-
olution increases the chance that the collimated 
laser pulses entirely hit the side of a water wave-
front facing away from the sensor, which results in 
water surface dropouts. Another problem for laser 
bathymetry is the very shallow zone, where the 
reflected echo pulse can no longer be separated 
into distinct returns from the surface and the bot-
tom (Schwarz et al. 2019). Thus, water surface mod-
elling is not straightforward, but requires expert in-
tervention to some extent. Practical workflows for 
photo and laser bathymetry therefore often rely 
on simplified water surface models neglecting the 
dynamic, wavy water surface. This decreases preci-
sion and accuracy (Westfeld et al. 2017) and makes 
image-based derivation of bottom topography 
impossible, especially for deeper areas.

From the above, we can conclude that both la-
ser and photo bathymetry would benefit from (i) 
better methods for coping with dynamic, wave-
induced water surface and (ii) existence of trust-
worthy ground-truth reference data to validate 
new and innovative data processing strategies. 
The aim of this contribution is therefore to intro-
duce a real-world benchmark reference dataset, 
openly accessible to the scientific community, and 
to introduce new ideas and concepts for deriving 
precise bathymetry based on aerial images and la-
ser scans. As a basis, we organised a multi-purpose 
and multi-sensor measurement campaign at the 
pre-alpine Pielach River in October 2024 following 
a major flood event in September 2024 (Bloeschl 
2024). In the contribution, we first describe the 
study area and the captured datasets in Section 2. 
In Section  3 we provide detailed information on 
how the acquired measurements were post-pro-
cessed to ensure a reliable benchmark dataset. 
This includes detailed descriptions of the process-
ing of the topo-bathymetric UAV-laser scanning 
mission, and the UAV-based acquisition of oblique 
and aerial images. In this Section, we also intro-
duce innovative concepts for deriving bathymetry 
from (stereo) images, using conventional or deep 
learning-based approaches. We present the result-
ing benchmark dataset including representative 
error metrics in Section 4. In the same Section, we 
also briefly show the first results of the advanced 
photo bathymetry methods, and we briefly discuss 
the obtained results. The article is summarised by 
the concluding remarks in Section 5.

2  Materials
2.1  Study area
The study area Neubacher Au (N 48°12’50”, 
E 15°22’30”; WGS 84) is located in eastern Austria in 
the tailwater of the pre-alpine Pielach River, a right-
hand side tributary of the Danube (see Fig. 1). The 
study area is located within a natural conserva-
tion area of the European Union Natura2000 pro-
gramme (area code: AT1219000). In the southern 
part of the study reach, a complete meander loop 
of the river encloses a riparian forest. North of the 
river, there is a pasture. The morphology is domi-
nated by gravel banks, point bars and steep cliffs. 
The river is classified as a riffle-pool type (Melcher 
and Schmutz 2010), reaching a maximum depth of 
about 3 m. It is characterised by a pluvio-nival re-
gime with typical discharge peaks during the win-
ter/spring snow melt and heavy rainfall in the sum-
mer. However, the last flood event in September 
2024 was caused by perpetual precipitation over a 
period of more than four days (Bloeschl 2024).

The mean annual discharge within the investi-
gated area is about 7 m3 s−1, the sediment of the 
bed load is dominated by coarse gravel (2 cm to 
6.3 cm), and the average gradient is about 0.4 %. 
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Fig. 1: Study area: Pielach/Neubacher Au. 
Left: Orthophoto superimposed with camera positions of the nadir/oblique UAV flight; inlet: Location of study area within Austria. 
Right: Orthophoto superimposed with trajectories of the topographic and topo-bathymetric LiDAR campaign

The entire catchment area of the Pielach River 
measures 590  km2 and the mean channel width 
is approximately 20 m. Although the longitudinal 
continuum of the Pielach River is disrupted by 
weirs built for hydropower use and engineering 
measures, the river has retained some of its natural 
self-forming morphological characteristics, such as 
periodically inundated sidearms, dynamic gravel 
bars, large woody debris, small oxbows, etc., within 
the study area (Zitek et al. 2008). A more detailed 
description of the study area and its surrounding 
can be found in Mandlburger et al. (2015).

2.2  Datasets
To obtain data to tackle the research questions 
formulated in Section 1, a multi-purpose measure-
ment campaign was conducted on October 24 
and 25, 2024. The campaign was carried out one 
month after the severe flood event on September 
20 and 21, 2024. By then, the river had regained a 
good level of transparency, which, in turn, enabled 
optimal conditions for optical hydrography.

As advancements in photo bathymetry are the 
main motivations of the entire initiative, we con-
ducted multiple UAV image acquisitions. First, the 
straight east-west river section was captured with 
nadir and oblique images using a DJI Zenmuse 
P1 45 MPix RGB-camera mounted on a DJI M350 
RTK multicopter UAV. With a flying altitude of 80 m 
above ground level (AGL), the resulting ground 
sampling distance (GSD) amounts to 1 cm for the 

nadir images. The oblique images were taken with 
an angle of 45° using the smart oblique mode in 
the DJI Pilot 2 flight controller app, which means 
that the gimbal constantly swings forward, back-
ward and sideward to mimic a classical penta cam-
era with a Swiss-cross pattern. The left panel of 
Fig. 1 shows the positions and orientations of the 
cameras. This flight block specifically served for 
the comparison of classical Dense Image Matching 
(DIM) versus photo bathymetry based on Neural 
Radiance Fields (NeRF) (Mildenhall et al. 2021).

To test the possibility of improving photo 
bathymetry in the presence of waves with im-
age sequences, we performed a second image 
acquisition, where the UAV stopped at predefined 
waypoints and hovered in the air for about 1 min-
ute while images were taken with a frame rate of 
0.7 Hz. This results in sequences of about the 100 
images per waypoint before the UAV was flying 
to the next waypoint, where the same procedure 
was repeated. Adjacent image sequences had an 
overlap to enable 3D stereo reconstruction. In this 
experiment, we tested flying altitudes of 25  m, 
50 m and 75 m, respectively, generating GSDs of 
3 mm to 9 mm.

Finally, this measurement campaign was our first 
opportunity to obtain a field dataset to map the 
undulating water surface with oblique and syn-
chronously captured stereo images, after working 
only with laboratory data (Gueguen and Mandl-
burger 2024). The goal was to apply our processing 
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workflow to field data and understand their subse-
quent specificity. In order to highlight an optimal 
configuration, we acquired data from four different 
positions and imaging directions with respect to 
the river flow direction. For that, we used two DJI 
M350 drones, each equipped with a DJI Zenmuse 
P1 camera. The two drones were manually con-
trolled so that pairs of oblique images were taken 
at each point. The UAVs hovered at these manually 
defined positions and took oblique images with 
a frame rate of 1 Hz. At this stage of the project, 
the synchronisation of the image capture was only 
done manually, with both drone pilots triggering 
image sequence capture at an acoustic signal. We 
also took care that as many ground control points 
(GCP) as possible are visible in both images to al-
low image orientation via spatial resection for each 
pair of images.

To provide proper reference for the aforemen-
tioned photo bathymetry experiments, we con-
ducted UAV laser scanning flights with both topo-
graphic and topo-bathymetric UAV laser scanners. 
We first captured the entire study area including 
the alluvial forest with a RIEGL miniVUX-3UAV la-
ser scanner operating a near-infrared (NIR) laser 
with a wavelength of 905 nm and a pulse repeti-
tion frequency of 300 kHz. The sensor is equipped 
with a RiLOC-E navigation unit, consisting of a helix 
GNSS antenna, a u-blox dual-band GNSS receiver 
and a MEMS IMU. For colourising the resulting 3D 
point cloud, the sensor is equipped with a Sony 
α6000 RGB camera. We flew the system 60 m AGL 
with a flight speed of 6 m s−1. These mission set-
tings resulted in a point density of more than 500 
points/m2. The flight trajectory is shown in Fig. 1. 
Data processing was carried out in the scanner 
manufacturer’s software RiPROCESS using Online 
WaveForm Processing (OWP) (Pfennigbauer et al. 
2014). From this dataset, we derived a digital terrain 
model (DTM) of the dry area and a digital water 
surface model (DWSM), which we later used for re-
fraction correction.

To obtain continuous underwater data, we con-
ducted a topo-bathymetric UAV survey with the 
RIEGL VQ-840-GL laser scanner. The sensor uses a 
green water penetrating laser operating at a wave-
length of 532 nm. The scanner features an elliptical 
Palmer scan mechanism with a lateral Field of View 
(FoV) of ±20° and a forward/backward FoV of ±14°. 
We flew the sensor at a flying altitude of 60 m AGL 
with pairs of flight lines aligned to the river axis 
and additional cross-strips in the area of specific 
interest in the northwestern part of the study area 
as plotted in the right panel of Fig. 1. As with the 
NIR laser, RiPROCESS was also used to process the 
green laser data. Waveform analysis was carried 
out using the standard OWP approach and the 
water-specific Surface-Volume-Bottom (SVB) algo-
rithm (Schwarz et al. 2019). Due to the good water 

clarity, we were able to capture the entire riverbed, 
including the approximately 3 m deep pool areas 
(cf. Fig. 4). Table 1 summarises the parameters used 
for both LiDAR surveys.

In addition to the LiDAR point clouds shown 
in Fig. 4, the RIEGL VQ-840-GL is able to capture 
full-waveform data (Fig.  2). This feature enables 
the processing using the SVB algorithm, as here a 
possible decomposition is fitted to the waveform 
data, requiring an extended record of the reflected 
laser pulse.

To allow accurate georeferencing and evalu-
ation of the geometric quality of the acquired 
datasets, a geodetic reference network was es-
tablished in the study area. Four static GNSS posi-
tion observations constitute the basis of the net-
work (Fig. 3). The points were observed between 
1.5 and 5.5 hours. For post-processing of these 
long-term GNSS measurements, we used a lo-
cal base station in the nearby village of Loosdorf, 
which led to baselines shorter than 2 km. These 
four points define the datum of the local reali-
sation of ETRS89 (reference epoch: 2015.0, UTM 
33N, EPSG: 25833).

The inner geometry of the network is defined 
by total station measurements from four positions, 
of which two are identical with the GNSS points. A 
Leica MS60 robotic total station was used and the 
local coordinate uncertainties of the fixed network 
points reach 2 mm in position and 3 mm in height 
after adjustment. Transformation into a global 
ETRS89/UTM 33 coordinate system yielded an un-
certainty of less than 5 mm. Based on the total sta-
tion network, we measured photogrammetric tar-
gets above and below the water surface, as well as 
bathymetric cross-sections (cf. Fig. 3). These meas-
urements were not included in the network ad-
justment to allow maximum accuracy of the inner 

System Flight altitude Beam divergence Pulse repetition rate

RIEGL VQ-840-GL 60 m ± 5 m 1 mrad 199 kHz

RIEGL miniVUX-3UAV 60 m ± 14 m 1.5 mrad 300 kHz

Table 1: The different settings and parameters of the LiDAR systems used in the survey

Fig. 2: Full-waveform data of the cross-section shown in Fig.  4 for the green LiDAR system. 
Each panel displays 100 recorded waveforms for different depths of the cross-section, where 
one sample interval equals approximately 0.5 ns and the amplitude is given in units of the 
system’s Analog-to-Digital Converter (ADC)
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geometry of the measurements. While the above-
water photogrammetric targets were measured 
using an accurate mini reflector, the profiles and 
below-water targets were measured with a pole 
and a 360° prism. In addition to the inherent devia-
tions of 360° prisms (about 3 mm), the long pole 
1.8  m introduces an additional uncertainty be-
cause pole levelling proved difficult in the strong 
currents of the Pielach River. To increase accuracy, 
we repeatedly measured the underwater targets 
and averaged the measurements. To counteract 
the effect of the submersion of the pole tip in the 
river sediment, a special pole adapter was used for 
bathymetric measurements. The adapter is a disk 
with a diameter of 6 cm instead of a classic tip at 
the bottom of the prism pole. However, the effect 

of the pole tip submersion is presumably still larger 
than the uncertainty introduced by the slight incli-
nation of the prism pole and the prism deviations. 
Our assessment of the uncertainty of the meas-
urement shows that, e.g., the bathymetric profiles 
exhibit a global uncertainty of less than 18  mm 
for the data in ETRS89/UTM 33N and a local uncer-
tainty of only 13 mm towards our local realisation 
of the geodetic network.

The georeferencing for the LiDAR data is estab-
lished using eight sloped planes (saddle roofs) set 
up in the study area (Fig. 1 and Fig. 3). Similarly to 
the photogrammetric targets used for georefer-
encing the photogrammetric bundle block ad-
justment, the eight planes are used to transform 
the strip-adjusted LiDAR data into our local coor-
dinate system realisation. Our investigation shows 
that a shift of (−2.2, 1.9, 3.6)T cm was necessary for 
the miniVUX-3UAV data and of (−1.2, 1.4,−11.7)T cm 
for the VQ-840-GL data to transform the data into 
the coordinate system defined by the terrestrial 
network. With the exception of the rather high 
vertical correction necessary for the VQ-840-GL 
dataset, these values lie exactly in the expected 
uncertainty range of the GNSS-RTK georeferenced 
airborne LiDAR datasets.

3  Methods
In this Section, we briefly describe the data pro-
cessing methods employed. We first focus on 
a description of the general photogrammetric 
and LiDAR workflows used to convert the raw 
laser and image data to georeferenced and re-
fraction-corrected 3D point clouds (Sections 3.1 
and 3.2). Later, we also describe details of the 
three conducted experiments, namely deriving 
bathymetry from stereo image sequences (Sec-
tion 3.3), mapping the water surface with oblique 
stereo images (Section 3.4), and reconstructing 
both topography and bathymetry with NeRFs 
(Section 3.5).

Fig. 3: Overview of the network of reference measurements. The geodetic datum (ETRS89/
UTM 33) is defined by the four GNSS points (green). All photogrammetric ground control 
points (brown) and river cross-sections (white) were measured from total station network 
points (red diamond). The river cross-sections marked with blue and orange points are 
shown in Fig. 4 and Fig. 9C, respectively

Fig. 4: Cross-section of a deeper section of the Pielach River. The different panels show the four types of point cloud 
data available in this study, near-infrared LiDAR (NIR) together with the green LiDAR processed using online waveform 
processing (OWP) and the surface-volume-bottom algorithm (SVB)
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3.1 LiDAR workflow
The full waveforms of the topo-bathymetric LiDAR 
sensor introduced in Section 2.2 were processed 
by two different algorithms. While Online Wave-
form Processing (OWP) (Pfennigbauer et al. 2014) 
uses a reduced set of the recorded waveforms 
around signal peaks to extract points online dur-
ing flight, the SVB algorithm (Schwarz et al. 2019) 
is applied in post-processing and aims to extract 
further data through the application of exponen-
tial decomposition (Schwarz et al. 2017) associated 
with the water column backscattering. This well-
known physical foundation for the interaction of 
laser pulses with the water column improves the 
water surface detection and furthermore is able 
to capture deeper points than standard methods. 
The new points in this method can then further-
more be extended by the points produced during 
standard processing (OWP), enhancing the point 
cloud in turbid or deep waters. In contrast to that, 
only OWP was used to process the waveform data 
of the topographic data  (miniVUX-3UAV).

Georeferencing and strip adjustment were 
performed using the method of Glira et al. (2016) 
implemented in the scientific laser scanning soft-
ware OPALS (Pfeifer et al. 2014) for the topo-ba-
thymetric LiDAR dataset and the holistic approach 
of Pöppl et al. (2024) integrated in RiPROCESS for 
the topographic LiDAR dataset. In both cases, the 
saddle roof reference surfaces (cf. Fig. 1) were used 
for precise georeferencing of the point cloud with 
respect to the ETRS89 system defined by the ter-
restrial reference network.

After full-waveform analysis and strip adjust-
ment, refraction correction was performed for all 
underwater points of the resulting georeferenced 
3D point cloud. The steps include (i) the derivation 
of a gridded water surface model, (ii) the calcula-
tion of beam vectors for each laser point (based 
on the trajectory) and (iii) the final run-time and 
refraction correction (Mandlburger et al. 2015) im-
plemented in the module Snellius of the OPALS 
software. The water surface model was obtained 
from the water surface reflections of the NIR laser 
data. Although the coverage with water surface 
points was not continuous, any gaps could be 
filled by interpolation.

3.2  Photogrammetric workflow
The block of nadir and oblique images shown in 
Fig.  1 was processed using a standard Structure-
from-Motion (SfM) workflow. The procedure con-
sists of finding image features in individual images, 
matching the features to obtain 3D tie points, and 
establishing the relative orientation for all overlap-
ping image pairs. Georeferencing of the entire im-
age block is done in a final step by first semi-auto-
matically measuring the GCPs in the images and 
then performing the bundle block adjustment 

(Förstner and Wrobel 2016; Kraus 2007) including 
on-the-job camera calibration based on all avail-
able data (tie points, GCPs). This provides the inte-
rior orientation of the employed DJI Zenmuse P1 
camera (principal point, focal length, lens distor-
tion parameters) and the exterior orientations of all 
captured images (XYZ coordinates of the projec-
tion centres, Omega/Phi/Kappa rotations angles). 
This is the basis for follow-up processing steps like 
creating a 3D point cloud via Dense Image Match-
ing, as well as orthophoto and 3D mesh genera-
tion. The described procedure was carried out for 
both the nadir/oblique Zenmuse P1 images and 
also for the Sony α6000 images of the miniVUX-
3UAV LiDAR survey.

As long as underwater features are visible in the 
images, a dense reconstruction of the topogra-
phy of the river bottom is possible by first apply-
ing standard DIM (Wenzel et al. 2013; Hirschmuller 
2008). The raw 3D DIM point cloud is too shallow if 
ray bending at the water surface is not considered. 
Refraction correction is achieved by connecting 
the raw DIM points with the projection centre of 
the images, from which the point was originally 
matched. The connecting lines constitute the im-
age rays, which can be intersected with the wa-
ter surface model, yielding the 3D position where 
the image ray enters the water column. Based on 
Snells’ law of refraction, the direction of the under-
water ray can be calculated (Bryant 1958). This pro-
cedure is repeated for each image ray of a raw 3D 
point, and then forward intersection is performed 
for all underwater rays, producing the refraction-
corrected 3D position (Mandlburger 2019). The 
described correction procedure is implemented in 
the OPALS software (Pfeifer et al. 2014). A compara-
ble approach is described in Mulsow (2018).

3.3  Bathymetry from image sequences
As described in Section 1, the aim of this experi-
ment is to integrate multiple images of a sequence 
showing the same scene and to mitigate the ef-
fect of the dynamic, wavy water surface. During 
the campaign, several image sequences were ac-
quired from the hovering UAV. In order to obtain 
the maximum resolution, the camera was operat-
ed in frame image mode rather than video mode. 
The DJI Zenmuse P1 camera used can capture im-
age sequences in full resolution with a frame rate 
of 0.7 Hz. For each spot, around 100 images were 
taken with activated motion compensation via the 
gimbal. However, the images were slightly mov-
ing by up to 30 pixels in every direction within a 
sequence.

The first step in the processing pipeline is there-
fore aligning or co-registering all images to a sin-
gle reference frame in the middle of the sequence 
based on stable features on the river banks. This 
is necessary because of the (minor) instability of 
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the hovering UAV during image sequence acqui-
sition. For that, stable tie points along the river 
banks were defined in the reference image. In 
order to suppress perspective and projective ef-
fects on co-registration, only points close to the 
water level were chosen. The number of tie points 
ranges from 20 to 40 points while a minimum of 
four points is required. Tie points were tracked and 
measured via Least Squares Matching (LSM) in all 
images of the sequence with sub-pixel precision. 
All images of a sequence were then aligned with 
the reference image by applying the best-fitting 
projective transformation. In our case, the inner ac-
curacy ranges from 0.05 to 0.2 pixel.

All co-registered images of a sequence were 
stacked and handed over for final processing. The 
variation of grey values in each pixel position of 
the sequence is statistically analysed to find the 
representative grey value, which is not affected by 
the water surface dynamics. So far, empirical evi-
dence has shown that median filtering is the most 
effective method to achieve optimal contrast and 
robustness in the resulting image (Mulsow et al. 
2024). Thus, the standard strategy is to apply a me-
dian filter to the stacked grey values of each pixel 
position of the sequence. Values of 255 (overex-
posure) are excluded from the median filtering. 
For pixels showing mainly overexposed values, 
the algorithm has to be adapted. In that case, for 
example, the Minstore value (smallest pixel value) 
can be taken for the corrected image. If only fully 
saturated values of 255 were captured for one pix-
el position, the corrected value was interpolated 
from neighbouring pixels. The procedure is then 
repeated for all images of all individual sequenc-
es. Pairs of integrated stereo-images can then be 
used as basis for 3D bathymetry reconstruction 
using standard multi-media photogrammetry 
pipelines.

3.4 Water surface from oblique stereo images
The main processing direction is a standard SfM 
workflow and is performed pairwise with Agisoft 
Metashape. The steps are: (i) feature detection on 
each image and feature matching between both 
images, (ii) alignment of the cameras, (iii) geo-
referencing using the GCPs and finally (iv) dense 
matching. Highly textured and sharp features are 
required for efficient feature detection and match-
ing, and since (i) water does not fit these criteria 
(due to specular reflection at the water surface), 
and (ii) our previous studies with lab data have 
shown the difficulty of using such a method on wa-
ter bodies, we are also using deep learning-based 
solutions. In particular, we are interested in feature 
detection and feature matching, for example us-
ing Superpoint (DeTone et al. 2018) and LightGlue 
(Lindenberger et al. 2023), which have been shown 
to provide much higher quantities of valid match-

es for various datasets with low texture such as 
indoor environments. For this, we use the Hierar-
chical Localization toolbox hloc (Sarlin et al. 2019), 
which implements both. A benefit of this toolbox 
is that it also provides formats that are compatible 
with Metashape via Colmap, which means that 
the tie points and the 3D model resulting from 
Colmap can be imported into Metashape. Further 
analysis and processing can then be performed, 
such as outlier removal, scaling or georeferencing 
of the model and camera alignment optimisation.

3.5  Topography and bathymetry from NeRFs
Neural Radiance Fields (NeRFs) were first intro-
duced in March 2020 (Mildenhall et al. 2021). Since 
then, they gained widespread attention and adop-
tion. NeRFs enable the synthesis of novel scene 
views by optimising a continuous volumetric 
scene function using a given set of images. A NeRF 
represents a scene through a fully connected deep 
neural network based on 5D coordinates (spatial 
location and a viewing direction) as input, and 
outputs the volume density and view-dependent 
emitted radiance at that point.

The original NeRF algorithm is agnostic with re-
spect to media changes, but different extensions 
considering ray refraction have been proposed 
in the recent past. Our own concept of dealing 
with underwater ray refraction for NeRF-based 
processing based on UAV images (i.e., through-
water close-range bathymetry) is to train sepa-
rate NeRFs for above and below the water surface 
assuming a simple, planar water surface as a start-
ing point. Concepts for further adaptions include 
the consideration of slope variations on top of 
the simple water surface to compensate for wave 
effects or even to consider continuous refraction 
or at least discrete media changes along the im-
age ray.

For the Pielach image dataset, we generated the 
NeRF using the Nerfstudio framework, which pro-
vides a simple API to streamline the end-to-end 
process of creating, training and testing NeRFs. 
The camera orientations form the basis for the 
creation of the NeRF. In Nerfstudio, we used the 
Nerfacto model, specifically the Nerfacto-Huge 
variant. This method required approximately 24 GB 
of GPU VRAM, which was available on our NVIDIA 
A40 graphics card.

4  Results and discussions
In this Section, we present and briefly discuss the 
results of the data processing outlined in Section 3. 
We first present the topo-bathymetric LiDAR data 
(Section 4.1) that constitute the reference for the 
benchmark dataset. Thereafter, we present the re-
sults of the classical and advanced techniques for 
mapping bathymetry and water surfaces in Sec-
tions 4.2 to 4.5. 
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4.1 LiDAR data
Fig. 5A shows a hill shading of the final topo-ba-
thymetric DTM superimposed with a colour-cod-
ed depth map for a subset in the northwestern 
region of the study area. The depth map confirms 
the river structure as riffle-pool type with predom-
inantly shallow water depths of less than 1 m and 
occasional deeper pools of up to 2.5 m. This is also 
quantitatively demonstrated in the water depth 
histogram shown in Fig. 5B.

To evaluate the topographic and topo-bathym-
etric laser scanning data, each LiDAR point cloud 
is compared to the different types of terrestrially 
measured targets. Here both the absolute verti-
cal distance to the nearest neighbour of the ref-
erences was calculated, as well as a normal plane 
distance based on the ten closest neighbours of 
the reference. For the references acquired shown 
in Fig. 3, both types of LiDAR data can be com-
pared to checkerboard GCP targets and saddle 
roofs. For the NIR point cloud, the deviations be-
tween the LiDAR points and the GCP are mainly 
smaller than 2  cm for the vertical and normal 
distances. The discrepancies for saddle roofs are 
comparable with occasionally larger offsets due 
to rounding effects on the ridge line of both 
planes (Fig. 6).

For the green LiDAR point cloud, we evaluated 
the above- and below-water targets (GCPs, sad-
dle roofs, submerged checkerboard targets, and 
riverbed points) for the three different processing 
methods (OWP, SVB and a combination of OWP 
and SVB). The results are shown in Fig. 7. There, a 
slightly lower accuracy can be observed, which 
might result from the larger laser footprint size of 
the bathymetric sensor. Larger deviations are ob-
served for the SVB on the land targets (GCPs and 
saddle roofs), because the algorithm is tailored 
for bathymetric waveforms. Therefore, SVB land 
points can be considered outliers and thus do not 
reflect the representative measurement accuracy 
of the topo-bathymetric system. For all underwa-
ter targets, the accuracy is around ±3 cm as can be 
seen in Fig. 7C.

Lastly, we assessed the underwater accuracy in 
more detail by comparing the transects measured 
with the total station and the underwater LiDAR 
point cloud. For all three methods, a similar abso-
lute vertical distance can be seen in Fig. 8A. For the 
normal plane distance, the combined OWP and 
SVB + OWP data show similar distributions, only 
SVB shows slightly wider distributions, translating 
to slightly higher uncertainties (Fig. 8B).

We can conclude that, with respect to the re-
sidual deviations between the underwater LiDAR 
points and the terrestrially measured riverbed 
ground truth, the bathymetric LiDAR dataset ad-
heres to the Exclusive Order, the most rigorous 
standard issued by the International Hydrographic 

Organization (IHO 2008). The deviation between 
the riverbed reference points and the correspond-
ing bathymetric LiDAR points is 0.5 cm ± 2 cm.

4.2  Bathymetry from standard 
  through-water DIM
The results of the standard through-water photo 
bathymetry pipeline detailed in Section 3.2 are il-
lustrated in Fig. 9. For a relatively shallow section 
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Fig. 5: Results of topo-bathymetric LiDAR data processing for a subset of the study area. (A) DTM 
hill shade superimposed with colour-coded depth map. (B) Histogram of water depths [m]

Fig. 7: Evaluation of the green LiDAR point cloud accuracy for the GCP targets, underwater 
targets and saddle roofs (normal plane distance), for the three different processing parameters

Fig. 8: Evaluation of the topo-bathymetric LiDAR point cloud accuracy for the transects 
measured with the total station. (A) Absolute vertical distance. (B) Normal plane distance

Fig. 6: Evaluation of the NIR point cloud accuracy for the absolute vertical and normal plane 
distance for GCP checkerboard targets and saddle roofs
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of the Pielach River, Fig. 9A and B show the 3D RGB 
point cloud corrected for refraction obtained from 
DIM and the hill shading of a DTM derived from 
DIM points by median filtering. Superimposed on 
the shading, Fig. 9B displays a colour-coded water 
depth map, which reveals depths of 0 m to 2 m. It 
can be clearly seen that the DIM-derived riverbed 
is smooth and consistent up to a water depth of up 
to 1.5 m, but becomes more noisy in deeper areas. 
The latter is visible in the deep pool in the north-
west part of the scene. Here, image blurring and 
the associated loss of texture limit the achievable 
penetration depth of photo bathymetry.

For a representative transect, the DIM point 
cloud corrected for refraction, the final underwa-
ter DTM, and the terrestrially measured reference 
points are plotted in Fig. 9C. The point cloud (grey 
points) shows substantial spread underwater be-
cause of the shortcomings when not consider-
ing the dynamic, wavy water surface. However, 
for the shallow cross-section shown (max depth: 
approximately 1  m), the averaged DTM (violet) 
closely matches the underwater reference points 
(black/light grey) measured with the total sta-
tion. The histogram shown in Fig. 9D confirms the 
good agreement between the underwater DTM 
derived from the UAV images and the reference 
points with vertical deviations mainly less than 
5  cm. For all underwater reference points, the 
deviations (normal distances) with respect to the 
DIM-derived DTM measure 0 cm ± 4 cm. In other 

words, the underwater DTM is unbiased with an 
RMSE of 4 cm.

4.3 Bathymetry from image sequences
For the Pielach dataset, the method described in 
Section 3.3 worked well, and the corrected image 
corresponds to an image that would have been 
taken through a calm flat water surface. Fig.  10 
shows the results for the image sequence of a 
single spot. Fig. 10A displays the reference image, 
that is, the raw image taken from the middle of the 
entire sequence. All other images are co-registered 
to the reference image based on tie points in the 
dry or very shallow zone, which are tracked in all 
images of the sequence. The reference image and 
an arbitrary second image from the sequence are 
displayed in Fig.  10B together with the displace-
ment vectors, which transform the moving image 
(cyan) to the reference image (red). After applying 
the transformation, the residual deviations in x/y 
are small with an RMSE of 0.11/0.10 pixel.

The final median filtered image of the sequence 
is plotted in Fig. 10C. Compared to the original (ref-
erence) image, the filtered image appears much 
smoother, clearer and sharper in the river area. 
The effectiveness of the procedure can best be 
judged from the small inlet images showing the 
submerged checkerboard targets. In the original 
(reference) image, the targets are blurred, and they 
regained their actual sharp black-white edges and 
sharp geometric features in the filtered image. In 

Fig. 9: Results from standard through-water Dense Image Matching. 
(A) RGB-coloured and refraction-corrected 3D point cloud obtained from multiple stereo models. 
(B) Colour-coded water depth map superimposed with DIM DTM shading, dark/pale: area processed with SURE/Metashape 
software. 
(C) Representative river cross-section (original DIM points, DIM DTM, reference measurements). 
(D) Histogram: Actual-nominal deviations between reference points and DIM DTM
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future work, we will use these images for improved 
underwater stereo matching.

4.4  Water surface from oblique stereo images
Of the 2,165 pairs of images taken from different 
viewpoints, only 973 could be aligned with Agisoft 
Metashape and 1,487 with hloc. In addition, no 
tie point was detected on the water surface with 
Agisoft Metashape while hloc had for most pairs 
around 80 tie points on the water surface, which 
already shows a clear difference of performance 
between these tools. As an example, Fig. 11 shows 
the results of the feature matching using hloc for 
pair 583. In this case, we can see 71 tie points that 
were found on the water surface. To assess the ac-
curacy of the water surface tie points detected by 
deep learning, we used the digital water surface 
model as a reference. The following are the results 
presented for pair 583, but the same observations 
were made for other examples. Since the GCPs 
are non-coded targets, the comparison of the tie 
points with the DEM is not a step that is automa-
tised in the processing workflow, hence we cannot 
provide global results.

After importing the tie point cloud from hloc in 
Agisoft Metashape and georeferencing it into our 
coordinate system, the orientation of the images 
is estimated via bundle block adjustment. In this 
case, the re-projection error was around three pix-
els. In order to obtain a better accuracy, we have 
selected three images in addition to our selected 
pair to add redundancy to the bundle block ad-
justment. Since Agisoft Metashape is not able to 
find many matches, it is critical to maximise the 
number of GCPs on all images. With this approach, 
we were able to obtain an orientation for our 
two images of interest with a re-projection error 
around 0.4 pixels.

After applying the previously estimated camera 
orientation and georeferencing the model, the tie 
points are compared with the DEM of the water 
surface. The mean elevation difference is –6 mm, 
the median is –8 mm and the standard deviation 
is 53  mm. The histogram of these differences is 

Fig. 10: Results obtained from image sequence processing. 
(A) Example image of a sequence (approximately 100 images) captured from one position. 
(B) Colour composite (overlay) of reference (red) and moving image (cyan). Arrows indicate 
residuals between reference and fitted tie points after co-registration (RMSE 0.11/0,10 pixel  
in x/y). 
(C) Corrected image with the geometry of an image which would have been taken through a 
calm flat water surface. Small image inlets illustrate the de-blurring effect at the checkerboard 
targets in detail

Fig. 11: Results from the feature detection and matching (by Superpoint and LightGlue). Each point is a detected feature 
and the blue points are the matches between both images
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presented in Fig.  12. Most tie points are within a 
distance of 10 cm from the water surface, below 
or above. They were estimated from images of a 
dynamic surface, which partly explains why the 
values are dispersed around the mean level of the 
water surface.

4.5  Topography and bathymetry from NeRFs
The results obtained from the Neural Radiance 
Field trained with the nadir and oblique images 
introduced in Section 2.2 are displayed in Fig. 13. 
The right side (B) shows a synthetic view of the 
Pielach dataset rendered from the NeRF inside the 
Nerf studio viewer. The current implementation of 
the Nerfacto-Huge model assumes a straight im-
age rays when training and rendering the NeRF. 
This means that beam refraction at the water-air 
interface is not considered so far, neither for train-
ing nor for view synthesis. This leads to a sub-op-
timal representation of the riverbed topography. 
This, in turn, affects the resulting 3D point cloud 
exported from Nerfstudio. The underwater points 
are sparse and noisy, and no clear river bottom can 
be mapped. In future work, we will first train the 
NeRF model considering simple and then more 
complex water surfaces as outlined in Section 3.5.

5  Conclusions
In this article, we introduced a benchmark dataset 
for mapping a riffle-pool-type pre-alpine gravel 
bed river with optical bathymetry. The Pielach 
River has been repeatedly captured for more than 
a decade with images and laser scans from crewed 
or uncrewed aerial platforms. Following a devas-

tating 300-year flood event in September 2024 
(Bloeschl 2024), we surveyed a 750 m long section 
of the river with multicopter drones on October 24 
to 25, 2024.

We first established a precise geodetic network 
based on GNSS and total station measurements, 
measured ground control points and saddle-roof 
shaped reference surfaces on land for precise geo-
referencing of the acquired airborne data. Our ref-
erence measurements also included a total station 
survey of 13 photogrammetric underwater targets 
and 19 river cross-sections.

The airborne survey consisted of a flight block 
with nadir and oblique images from a flying altitude 
of 80 m AGL. In addition, we also conducted experi-
ments with a UAV hovering over certain waypoints 
taking sequences of 100 images before moving to 
the next position. In a separate experiment, we em-
ployed two UAVs and took synchronous oblique 
images of the water surface. The prior experiment 
was intended to mitigate the effects of the undu-
lating water surface for precise bathymetry esti-
mation with stereo images, and the latter experi-
ment aimed to test the possibility of capturing the 
3D shape of the instantaneous water surface as a 
prerequisite step for later integrated estimation of 
both water surface and bottom from synchronised 
UAV images. For all image acquisitions, we em-
ployed DJI M350 RTK multicopter UAVs equipped 
with DJI Zenmuse P1 RGB cameras. With this setup, 
we obtained a ground sampling distance of 1 cm 
at a flying altitude of 80 m.

The airborne data acquisition was complement-
ed by topographic and topo-bathymetric flight 
missions. The prior served as a basis for capturing 
the river surroundings, including the alluvial forest 
enclosed by the mapped meander of the Pielach 
River, and for obtaining a precise model of the wa-
ter surface needed for refraction correction. How-
ever, the main survey was the topo-bathymetric 
UAV flight with the RIEGL VQ-840-GL sensor. Due 
to the clear water, we were able to fully penetrate 
the entire river, including approximately 3 m deep 
pools. The final georeferenced and refraction-cor-
rected 3D LiDAR point cloud provides a trustwor-
thy areal reference for various photo bathymetry 

Fig. 12: Elevation differences between the hloc tie points 
on the water surface and the water surface DEM

Fig. 13: Results from NeRF processing.
(A) RGB-coloured 3D point cloud exported from Nerfstudio. (B) Synthetic view rendered from the trained NeRF
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applications. Compared to the ground truth ob-
tained from the total station measurements, the 
residual vertical errors of the bathymetric point 
cloud are less than 2 cm.

Next to the standard data processing, we also 
introduced novel and innovative approaches for 
mapping bathymetry and undulating water sur-

faces in 3D. This was made possible by applying 
image sequences instead of single image frames 
and by synchronous acquisition of oblique ste-
reo images. As further novelty, we introduced 
our first ideas for using Neural Radiance Fields for 
bathymetry estimation. In future work, we will ex-
tend the presented research directions. //
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