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riverbed and placed on the left-hand side of the 
riverbank. Since the Federal Ministry for Digital 
and Transport instructed the Wasserstraßen- und 
Schifffahrtsamt Rhein (WSA Rhein) to optimise 
and improve the shipping channel to increase the 
depth for shipping purposes (Bundesverkehrswe-
geplan BVWP 2030, W27 – »Abladeverbesserung 
und Sohlstabilisierung zwischen Duisburg und 

1  Motivation and background
The riverbed of the Cologne Bay commonly con-
sists of quaternary sand and gravel. Despite of that, 
there is a region north of the city Düsseldorf where 
the topmost layer not only composes prevalent 
sand and gravel, but is interspersed with smaller 
and bigger quartzite blocks. The underlying ter-
tiary silt layer reaches much closer to the surface 
than usual. 

These anomalies date back to approximately 30 
million years ago, when the location was part of 
the former Wadden Sea. Under pressure, the silt 
and the later vegetation were partially transformed 
into massive blocks, having a typical dimension of 
1 m to 2 m. Since the diameter increases up to 8 m 
and extends up to 1  m above the riverbed, the 
blocks form nautical obstacles. Furthermore, the 
erosion of the riverbed and hydro-morphological 
processes further expose the quartzite blocks. It is 
estimated, that there are more than 400 quartzite 
blocks, which are concentrated in three to four 
larger areas. 

In the past years, several of the blocks, as shown 
in the Fig. 1, were permanently removed from the 
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Im Zuge einer Fächerecholot-Messkampagne zur Detektion von Quarzitblöcken im Niederrheinischen 
Flussbett bei Düsseldorf wurden sowohl topografische Daten als auch Rückstreudaten in hoher Auflösung 
erfasst. In einer ersten visuellen Analyse des Datensatzes wurden mehr als 8600 potenzielle Quarzitblöcke 
erfasst. Um die manuelle Detektion zu verbessern und zu automatisieren und um zusätzliche Informatio-
nen über die Blöcke zu generieren, werden zwei Ansätze vorgestellt: eine GIS-Methode und ein KI-Ansatz, 
der ein neuronales Faltungsnetzwerk verwendet.

Development of semi-automatic and automatic 
approaches for the detection of boulders

Fig. 1: Riverbed and quartzite blocks taken inside 
the diving bell of TGS Carl Straat
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only 0.8 m, DVocean is explicitly designed for the 
operation in shallow waters. For the scope of the 
project, DVocean was trailered to the Rhine. To 
conduct the survey, a multibeam echo sounder 
from Kongsberg (EM2040P MKII), a sound veloc-

Stürzelberg«), the number and the appearance of 
the quartzite blocks must be investigated more 
closely. 

The W27 project area is located between Rhine 
kilometre 722.5 (Düsseldorf) and 769.5 (Krefeld) 
and split into four legs, prospective construction 
sites. The Leg TA3 – »Steinerne Bänke« is located 
in the northern part of Düsseldorf, spanning over 
a distance of roughly 10 km (Fig. 2). To determine 
the composition of the riverbed within Leg 3, data 
from multiple multibeam surveys, spanning over 
a time period of 20 years, were analysed. There-
fore, anomalies in hillshade visuals were manually 
inspected. This method is not only time-consum-
ing, but also limited to larger blocks that protrude 
more than 10 cm above the riverbed. Furthermore, 
it can be difficult to distinguish actual objects from 
scattered echo sounding measurements. To en-
able a more thoroughly detection of the quartzite 
blocks, additional data derived from a side-scan so-
nar, was investigated. Since this data only revealed 
larger blocks, the extraction of further informa-
tion was limited. To validate the existing datasets 
and to detect smaller blocks as well as flat rocks 
laying on the riverbed, the usage of backscatter 
data was considered. Since quartzite has a differ-
ent backscatter signature in comparison to gravel 
and sand, the data could be used for a more thor-
oughly detection of the blocks. In addition, the 
data could be used for an automated approach 
which would not only save human effort, but also 
time. As a consequence, the WSA Rhein instructed 
the HafenCity University Hamburg (HCU) to survey 
the test area with a high-resolution multibeam 
echo sounder, collecting bathymetry as well as 
backscatter intensity information, and to develop 
an automated approach for the detection of the 
boulders. 

2  Conducted survey on the River Rhine  
 near Düsseldorf 
For the scope of the project, an area between 
Rhine kilometre 747.0 and 754.5, situated be-
tween Theodor-Heuss-Brücke and the Rhine ferry 
Langst-Kaiserswerth, was surveyed. The area is 
characterised by a long curve before passing un-
der the highway bridge of A44. Depending on the 
discharge and the water level height of the River 
Rhein, the area indicates a water depth up to 8 m. 
To allow for a sufficient compromise between an 
adequate water level and not too strong river cur-
rents, the survey was conducted between 24th 
and 31st July 2024 during mean water. Fig. 2 pro-
vides an overview map of the survey area, includ-
ing the measured bathymetry respective to gauge 
zero of the Düsseldorf Rhine-gauge.

For the data acquisition, the HCU owned survey 
vessel DVocean, which is illustrated in Fig.  3, was 
used. With a length of about 8  m and a draft of 

Fig. 2: Overview map of the survey area »Steinerne Bänke« on the River Rhine 
downstream of Düsseldorf

Fig. 3: HCU owned survey vessel DVocean in the 
harbour Lörick close to Düsseldorf



32 Journal of Applied Hydrography

Vermessung des Rheins I

ity profiler from AML (AML-3 LGR with SV, CT and 
pressure sensor), an inertial navigation system 
from iXblue (Hydrins G4) and a Septentrio GNSS 
positioning system (AsteRx-U3) with two antennas 
and RTK correction data using SAPOS, was used. 

After the equipment of DVocean was set up at the 
harbour Lörick, a patch-test calibration has been 
performed. The survey area itself was split into 15 
survey sections, each having a length of about half 
a kilometre. The multibeam echo sounder was 
operated with a frequency of 300 kHz, simultane-
ously acquiring bathymetric and backscatter data. 
For quality control, at least one cross-profile within 
each section, hence every 500 m, was conducted. 
Sound velocity profiles were taken every 4 hours. 
To detect the quartzite blocks down to a size of 
some decimetres and ensure a sufficient point 
density, a survey speed of 3 knots for survey lines 
running against the currents, was maintained. Fur-
thermore, lines along the stream direction were 
surveyed with a 100 % overlap. Therewith a point 
density of at least 160 points/m2 (95 % confidence) 
was achieved and controlled during data acquisi-
tion. Due to the strong river current and high traffic 
volume of inland waterway vessels, manoeuvrabil-
ity was limited. Additionally, several breakdowns of 
the inertial navigation system required extra align-
ments during the survey and delayed the survey 
routine. The entire survey area with a total length 
of 7.5 river kilometres was surveyed as close to the 
river banks as the manoeuvrability allowed. 

3  Processing of the acquired data 
Overall, more than 230  km of multibeam survey 
lines were surveyed during the project. To pro-
cess the derived bathymetric multibeam data, the 
data was filtered, cleaned and validated using QPS 
Qimera. Due to the loss of GNSS underneath the 

highway bridge and the increase of positioning 
uncertainty, the respective survey lines had to be 
vertically adjusted. Besides, small outages of the 
inertial measurement unit were covered by ad-
ditional survey lines and interpolated. Vibrations 
of the MBES pole, caused by the strong currents, 
created small and irreversible ripples within the 
dataset. However, the cross-check revealed that 
all datasets met the standards of the special order 
set by the International Hydrographic Organiza-
tion (IHO). The total uncertainty results did not 
exceed 15  cm in horizontal and 5  cm in vertical 
direction, which was the pre-defined minimum 
requirement for discovering the quartzite blocks. 
The backscatter data was used to create an inten-
sity mosaic.

The bathymetry and the backscatter data were 
used for the manual detection of the quartzite 
boulders. Fig. 4 exemplarily shows how the man-
ual detection took place in an area around Rhine 
kilometre 750. Here, numerous boulders were dis-
covered. The corresponding bathymetry for the 
exact same area is shown next to it. By drawing 
polygons around the suspicious areas and evaluat-
ing the topography, the area size and height of the 
boulders above the riverbed could be estimated.

4  Preliminary results from  
 manual detection
During the manual processing phase more than 
8,000 possible quartzite blocks were identified. 
Given that different processors made individual 
decisions, some variation within the detection 
judgments is expected. The average area of the 
detected quartzite blocks is 1.90 m2, with a mean 
height above the riverbed of 0.28  m. Fig.  5 illus-
trates the relationship between the mean size and 
the number of detected quartzite blocks across 

Fig. 4: Detailed zoomed chart at an area of high boulder occurrence showing the intensity (left) 
and the bathymetry and the polygons from the manual detection (right)
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different sections of the survey area, providing in-
sight into their horizontal distribution. While the 
mean size of the quartzite blocks detected within 
the first three kilometres of the survey area reaches 
a few decimetres, the size significantly increases to 
the metre scale from Rhine kilometre 750.0 on-
wards. This increase correlates with the beginning 
of the river bend, likely due to stronger currents 
on the outer bend, where sediment erodes more 
quickly exposing the quartzite blocks. Additionally, 
a significant rise in the number of detected quartz-
ite blocks is observed between Rhine kilometre 
750.5 and 751.5, marking the area at the start of the 
river bend.

5  Conceptualisation of automatic  
 detection approaches
The manual detection process employed in such 
a project is labour-intensive, requiring consid-
erable working-hours. As the project area ex-
pands, the workload substantially increases. To 
address these limitations, modern approaches 
integrate advanced techniques that combine 
multibeam bathymetry and backscatter data for 
riverbed characterisation. While bathymetry pro-
vides information about riverbed topography, 
backscatter data offers insights to the material 
composition of the substrate and its texture. The 
subsequent phase of this project involves the im-
plementation of artificial intelligence to stream-
line and enhance the detection process. Two 
separate methods, one semi- and one fully au-
tomatic detection approach, will be developed, 
tested and evaluated.

5.1  Semi-automatic approach  
  with GIS methods
The objective of the semi-automatic detection ap-
proach is the classification of boulders by integrat-
ing terrain analysis derived from bathymetry with 
texture analysis from backscatter data. 

A key challenge within this approach is to deter-
mine which features are most effective to distin-
guish boulders from other riverbed structures. Not 
all terrain or texture attributes contribute equally; 
some may have a stronger influence on classifica-
tion accuracy than others. To address this, the re-
search involves a thorough analysis of the relation-
ships between the different features.

Image segmentation plays a crucial role in this 
process by isolating potential boulders from the 
surrounding sediment based on extracted ter-
rain and texture attributes. Using segmentation 
techniques, the riverbed is divided into distinct 
regions where each pixel is classified according 
to its morphological and textural properties. This 
step refines the feature extraction process, reduc-
ing noise and enhancing the accuracy of boulder 
detection (Fakiris et al. 2019). 

Fig. 5: Mean size of detected quartzite blocks in m2 depicted by red dots 
and total number of blocks detected in each survey section

Additionally, statistical methods are applied to 
examine correlations, and machine learning algo-
rithms are used to develop a classification model. 
The detected boulders from the segmentation 
and classification process are compared to a refer-
ence dataset created through the manual identifi-
cation of boulders to ensure its reliability.

To extract the textural characteristics, the Grey 
Level Co-occurrence Matrix (GLCM) technique is 
employed. As shown in the Fig. 6, GLCM computes 
parameters such as homogeneity, dissimilarity, 
contrast, entropy and mean, which are particularly 
useful for the detection of regions with abrupt tex-
tural changes (Fakiris et al. 2019). Smooth sediment 
areas typically exhibit high homogeneity, whereas 
the irregular surfaces of boulders are marked by 
a higher contrast and dissimilarity values. Addi-
tionally, entropy captures the complexity and the 
randomness of textures, helping to distinguish 
heterogeneous surfaces from more uniform ones 
(Janowski et al. 2018).

Parallel, terrain analysis focuses on the quan-
tification of the physical features of the riverbed. 
Hereby three primary derivatives, being rough-
ness, slope and curvature, are calculated from the 
bathymetric data. Roughness provides an indica-
tion of how much the seafloor elevation varies 
over short distances, which can indicate the pres-
ence of boulders. While the slope or steepness, 
helps to identify abrupt changes in the underwater 
landscape, curvature reveals whether the bottom 
is convex (indicating a rise) or concave (indicating 
a depression) (Lerodiaconou et al. 2018; Janowski 
et al. 2021). Together, these metrics provide a com-
prehensive picture of the terrain, enhancing the 
overall ability to detect boulders.

The combined analysis of multibeam bathymetry 
and backscatter data represents a significant ad-
vancement in river- and seabed characterisation. 
The presented semi-automatic method, imple-
mented through Python scripting and GIS soft-
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data will be split into training, validation and test 
datasets.

The performance of the model will be evalu-
ated by using a range of metrics, including accu-
racy, precision and recall. Additionally, a confusion 
matrix analysis will be conducted, with particular 
emphasis on minimising false negatives, which are 
critical for the accurate identification of quartzite 
blocks.

To assess the optimal performance of the mod-
el, either the bathymetry dataset, the backscatter 
dataset or a combination of both will be utilised as 
input data. Additionally, statistical derivatives, such 
as slope, roundness and texture features derived 
from the Grey Level Co-occurrence Matrix (GLCM), 
will be computed from the datasets. A feature 
selection analysis will be conducted to eliminate 
redundancy and enhance the performance of the 
model.

Since the model will utilise a single setup that in-
corporates six distinct input datasets, six separate 
results for comparative analysis will be generated. 
The considered datasets and combinations are as 
follows:
• Bathymetry
• Backscatter
• Backscatter + derivatives
• Bathymetry + derivatives
• Bathymetry + Backscatter
• Backscatter + derivatives + Bathymetry + de-

rivatives

Fig. 6: Backscatter intensity of a subsample in the test area with clearly identifiable quartzite blocks (a) 
and its corresponding texture analysis using Grey Level Co-occurrence Matrices (GLCM), including homogeneity (b), 
entropy (c), dissimilarity (d), contrast (e), mean (f)

ware, aims to provide a more efficient and precise 
approach for detecting boulders. 

5.2  Automatic approach with AI methods
The fully automatic detection approach utilises a 
convolutional neural network (CNN) with a U-Net 
architecture to improve the detection of quartz-
ite blocks through semantic segmentation, effec-
tively replacing the manual detection method. 
The selection of the CNN U-Net architecture is 
based on its proven ability to capture complex 
pixel-wise patterns and provide detailed shape 
recognition  (Ghosh et al. 2020; Kar et al. 2021). 
This capability is essential for differentiating ob-
jects, particularly in scenarios involving clusters, 
as opposed to traditional bounding box ap-
proaches using for instance the You Only Look 
Once (YOLO) algorithm.

Previous studies have shown the effectiveness 
of CNN U-Net architectures in hydrographic sur-
veys. For example, Arosio et al. (2023) and Garone 
et al. (2023) successfully employed CNNs for the 
classification of seabed sediments into distinct 
classes using bathymetric as well as backscatter 
datasets.

The proposed model will be developed and 
evaluated using Python, specifically leveraging 
deep learning libraries such as Keras. For the de-
tection of the quartzite blocks, a binary seman-
tic classification, utilising labelled data from the 
manual detection process, will be applied. This 
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has identified over 8,600 potential boulder sites, 
which were detected through manual inspection. 
The distribution of blocks correlates to the current 
change in the river bend, indicated by the high ex-
posure of blocks and bigger size of blocks in this 
area. 

For the second phase of the project two auto-
matic detection methods for the quartzite block 
detection will be developed. The semi-automatic 
approach integrates GIS tools and texture analysis 
derived from backscatter data alongside terrain 
features from bathymetry. Meanwhile, the fully 
automated approach uses a convolutional neural 
network (CNN) with U-Net architecture for a pixel-
wise semantic segmentation, aiming to enhance 
detection accuracy, especially in areas with clus-
tered blocks. Both methods will use the manual 
detected dataset as their ground-truth data and 
both approaches will be evaluated with regard to 
their detection performance. //

This methodological approach aims to improve 
the efficiency and the accuracy of the block detec-
tion, facilitating a scalable analysis of the datasets. A 
schematic diagram, which illustrates the workflow, 
using the bathymetric dataset as the initial input 
and demonstrating the predictions of the model, 
is presented in the Fig. 7.

The predictions generated by the model will be 
compared to the ground truth data derived from 
the manual detection. An analysis of the location 
and the dimensions of the blocks will be conduct-
ed to identify areas for improving the model.

6  Conclusion 
The study on the detection of quartzite blocks in 
the River Rhine highlights the challenges and pro-
gress in automating the identification of potential-
ly hazardous objects in the riverbed. The high-res-
olution multibeam echo sounder data, including 
both bathymetric and backscatter information, 
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