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curate georeferenced data points. Boulder surveys, 
more speci!cally, seek to identify prominent boul-
ders whose positions may collide with planned 
cable routes or o"shore wind farms. Such surveys 
are performed using suitable sensor technologies 
such as bathymetry from multibeam echo sound-
ers and side-scan sonar imaging. The ever-accu-
mulating log !les are !rst available for review after 
mission completion where boulders, de!ned as 
salient objects on the seabed, need identi!cation. 
This identi!cation process is a labour-intensive job 
and does not only require domain expertise for 
interpreting the data, but each identi!ed target 
needs further to be measured in size and mapped 
to its exact location. The processing job is typically 
concluded by compiling a report of all prominent 
targets and their metadata, providing the client 
with detailed information needed for making in-
formed decisions on the next steps.

1 Introduction
Collecting side-scan data of large areas using au-
tonomous underwater vehicles (AUVs), operators 
seek to utilise the vehicle’s total endurance to cover 
as much area as possible by following a prede!ned 
trajectory or by traversing back and forth in a lawn-
mower pattern. This is accomplished with a care-
fully chosen set of parameters relating to vehicle 
trajectory, attitude, velocity and sensor settings 
to align for su#cient coverage, overlap, data reso-
lution and data quality. As work is done in GNSS-
denied environments, positioning and navigation 
are estimated by high-quality acoustically-aided 
subsea inertial navigation systems. During opera-
tion, communication with the vehicle is limited to 
low-bandwidth acoustic data links typically used to 
monitor only a few important vehicle parameters.

We describe subsea surveying as the process of 
mapping the ocean $oor by collecting highly ac-
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As shown in Fig. 1, we propose to automate the 
majority of this process by leveraging neural net-
works for processing side-scan logs. More speci!-
cally, recorded logs are passed through our model 
that estimates the positions and areas of promi-
nent boulders. Due to the design nature of the 
neural network, all estimated boulders are separa-
ble at an instance level. This allows us to count the 
number of boulders in the log !le and analyse each 
separate boulder in relation to georeferenced po-
sition, size and con!dence. By further !ltering the 
outputs, we can remove most false positives and 
eliminate cases where a boulder is identi!ed and 
counted several times. The latter case occurs due 
to overlap in the data, which typically is created 
and desired by design. We currently make a naive 
assumption on size and calculate a pseudo area for 
each boulder using the coverage obtained by the 
estimated segmentation masks and can thus sort 
boulders by size. Future work will be making more 
accurate predictions on boulder sizes and hence 
give complete control over which sizes (width, 
height and length) are desired to report.

Our method does not only bene!t from being 
an automated process but also promises substan-
tially shorter processing times. Quantitatively, our 
model can process several kilometres of side-scan 
data and identify thousands of boulders in less 
than a minute. In addition, the number of boulders 
that our model identi!es is signi!cantly higher 
than any human processor would possibly have 
time to process. The presented work is ongoing, 
but we estimate that saved time and e"ort will be 
substantial even in the current state.

2 Side-scan sonar data set
We collect available side-scan logs from previous 
completed in-house surveys and prepare them in 
a format suitable for training neural networks, as 
detailed below.

2.1 Hardware and data details
All side-scan data is recorded using EdgeTech 2205 
sonar systems integrated on our SeaCat AUVs 
(Kalwa 2019). Data is recorded using high- and low-

frequency channels and is available in EdgeTech’s 
JSF !le format. Typically, side-scan logs are split 
into line segments where turns are excluded. The 
spatial size of each line segment varies with ve-
locity, altitude and sensor settings. Our complete 
data set consists of more than 1500 km worth of 
line segments recorded at many di"erent loca-
tions. However, only a tiny fraction of this has been 
given annotations suitable for learning boulder 
identi!cation. In total, we have annotated about 
1300 prominent boulders with varying settings 
and visual variations. In Fig. 2, we show two side-
scan snippets with corresponding segmentation 
masks. We note that the objective of segmenta-
tion masks is to cover the complete area occupied 
by prominent boulders in order to, at a later stage, 
separate each of these areas into a boulder and 
shadow region.

2.2 Preprocessing of acoustic images
With the protocol description from EdgeTech, we 
read raw JSF !les using Python to load the sonar 
trace data into matrices for high- and low-frequen-
cies and port- and starboard-side channels. We 
further collect the navigational data, pulse infor-
mation and weighting factor for each cross-track 
line.

With the weighting factor and additional sen-
sor information, we restore each data sample to 
its original $oating-point value and perform slant-
range correction to match along-track and cross-
track resolutions. Each sonar image is further nor-

Fig. 1: Boulder identi!cation in side-scan sonar data. 1. Underwater vehicle on boulder survey collects and logs side-scan data. 2. Side-scan logs are 
evaluated by a neural network that predicts plausible areas occupied by a prominent boulder. 3. Boulders are identi!ed and metadata is computed, !ltered 
and sorted. 4. Side-scan logs are concluded by generating a report. Colour map is applied for better visual appearance

Fig. 2: Side-scan snippets with corresponding segmentation masks. For each 
boulder, we draw a segmentation mask that covers the boulder itself and its 
shadow. Colour map is applied for better visual appearance
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malised and stored as PNG images split into 200 m 
long segments. When applying colour maps for 
visualisation, we use the cmapy Python module 
with the afm-hot colour scheme.

3 Boulder identi#cation model
We aim to train a neural network that, given an 
input, predicts plausible areas occupied by boul-
ders not only by placing rectangular boxes around 
the object but by a per-pixel classi!cation of the 
input. Typically segmentation models consist of 
an encoder-decoder style architecture like U-Net 
(Ronneberger 2015). However, while U-Net style 
networks are fast and easy to train, they fail to 
o"er object-instance separation. Consequently, 
segmentation masks predicted by the model 
are essentially one object and thus need further 
processing to identify and analyse each separate 
boulder. Especially when boulders are located in 
close proximity, this is a di#cult task. To avoid in-
accuracies from hard-coding object separation al-
gorithms, we base our model on Mask R-CNN (He 
et al. 2017) for instance segmentation. As shown 
in Fig. 3, several neural networks are used as ex-
plained in the following.

3.1 Feature extraction
To generate feature maps of our input, we use a Fea-
ture Pyramid Network (FPN) (Lin et al. 2017) build on 
a ResNet (He et al. 2016) CNN with 50 layers. The FPN 
is used to extract features at di"erent scales from 
our single-scale input e#ciently. This is analogous 
to processing our input image at di"erent scales but 
much more e#cient in terms of computation. The 
complete ResNet-50-FPN backbone is pre-trained 
on the Microsoft COCO: Common Objects in Con-
text data set (Lin et al. 2014), and is not updated dur-
ing training for boulder identi!cation.

3.2 Region proposals
Region proposals are generated by a Region Pro-
posal Network (RPN). This evaluates the input 

feature map and predicts a set of rectangular 
regions and their objectness (score of object vs. 
background). The regions are generated by slid-
ing a !xed set of windows, called anchors, with 
varying aspect ratios and scales over the available 
(di"erently scaled) feature maps generated by the 
FPN. We refer to Ren et al. (2015) for more details 
on RPNs.

3.3 RoI pooling
The Region of Interest (RoI) pooling layer accepts 
the feature map generated by our ResNet-50-FPN 
feature extractor and the proposals from the RPN. 
The proposals from the RPN are a set of regions, 
each de!ned as a four-tuple (r; c; h; w) that speci!es 
top-left corner (r; c) and its height and width (h; w). 
As such, RoI pooling has the objective of »crop-
ping« out regions of the feature map in which the 
RPN has estimated an object and passing it on to 
the !nal output heads.

3.4 Box and score prediction head
This accepts the feature map of the regions pro-
posed by the RPN, i.e., the regions most likely to 
contain a boulder. We have two objectives for this 
head: (i) bounding-box regression and (ii) object 
classi!cation/score. The bounding-box regression 
re!nes the region proposed by the RPN to enclose 
the object better. The score is a measure of the 
network’s estimated probability of this object be-
ing a boulder.

3.5 Mask prediction head
For generating segmentation masks of our object 
instances, a Fully Convolutional Network (FCN) 
(Long et al. 2015) is used to estimate binary masks 
for each RoI. This prediction is 1-channel and bi-
nary, and thus class-agnostic. Therefore, we rely on 
the classi!cation score from the above prediction 
head to identify the object correctly. As we cur-
rently focus on boulders as a whole, we only have 
two options for the classi!cation (background or 

Fig. 3: Boulder identi!cation model overview. A feature extraction network generates feature maps of the input image. 
These are the input to a region proposal network (RPN), predicting regions in the input likely to contain an object. Using the 
region proposals, a region of interest (RoI) pooling layer »crops« the feature map and passes the regions on to our prediction 
heads. The box and score prediction head re!nes the bounding-boxes for the regions and estimates the probability of each 
region being a boulder. The mask prediction head performs a per-pixel classi!cation of the proposed regions and thus 
outputs a segmentation mask for each proposed region. Colour map is applied for better visual appearance
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boulder). However, in future work, we can use this 
same architecture for expanding the scope to in-
clude more low-level predictions, e.g., separating 
boulders into boulder and shadow regions. For 
more detailed information on the mask prediction 
head, we refer to He et al. (2017).

3.6 Loss functions
As we train our entire network end-to-end, we 
employ a multitask loss that seeks to minimise the 
error in each sub-network simultaneously. We can 
de!ne the total loss as:

 L = LRPN + Lloc + Lcls + Lmask ,
                 

RPN
       

RPNwhere LRPN = Lloc + Lcls  constitutes bounding- 
box regression loss and objectness score of the 
RPN, Lloc and Lcls are the bounding-box regression 
and classi!cation loss of the box and score predic-
tion head, and Lmask is the average binary cross-
entropy loss over the per-pixel classi!cation of the 
RoI for the !nal segmentation mask (mask predic-
tion head). For more details on loss functions and 
their implementation, we refer to Girshick (2015), 
Ren et al. (2015) and He et al. (2017).

4 Experiments

4.1 Training details
Our models are implemented in PyTorch and 
trained using four NVIDIA RTX 2080 Ti GPUs. Dur-
ing training, we load from our data set the 200-m 
tracks with corresponding segmentation masks 

and »mine« regions in which boulders are located. 
We do this by random cropping 256 × 256 pixel 
areas at locations that contain at least one annotat-
ed boulder. Since our annotations are sparse in the 
sense that not all boulders in a 200-m track have 
been carefully annotated, we ignore areas with no 
corresponding annotated segmentation mask. We 
further apply image transformations at random 
during training time to represent as many visually 
varying examples as possible. Finally, before en-
tering the network, the input image is resized to 
800 × 800 pixels. We use a batch size of eight per 
GPU and train our complete model end-to-end for 
about 5 × 103 update iterations.

4.2 Results
During inference, as illustrated in Fig. 4, we process 
side-scan data line-by-line by sliding a 256 × 256 
pixel window over it. We note that we can process 
input images of arbitrary size during inference 
time and are not limited to non-postprocessed 
(raw) lines. Hence, if a post-processing step is used 
to generate side-scan mosaics and mitigate errors 
from erroneous navigation or correct position o"-
sets due to uneven seabed, we can utilise this as 
input to our model. We use a sliding window ap-
proach to generate overlap of the processed data. 
This ensures that objects receive maximum expo-
sure to the network and are therefore identi!ed as 
a whole and not only partly identi!ed. The stride 
of the window is an adjustable parameter that 
balances processing time and accuracy. We use a 
stride of 100 pixels for our experiments.

Fig. 4: Result from processing a 200-m side-scan line. Inputs to the model are generated by sliding a 256 × 256 pixel window 
over the data as illustrated by blue squares. The red, green and purple squares are enlarged results and shown to the right. 
Note that the input to the model is greyscale, but a colour map is applied for better visual appearance. The input image 
used here has a length of 200 m, a width of 80 m and a resolution of 0.1 m/px. This was processed on a single GPU in 13 s. 
The amount of identi!ed boulders does not a"ect the processing time
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After processing each window separately, we 
reassemble outputs corresponding to the input 
by mapping each locally detected boulder into 
its global coordinate. Due to the sliding window 
approach, many boulders will be identi!ed several 
times. To keep only the best segmentation mask 
for the identi!ed boulders, we use non-maximum 
suppression (NMS) that !lters overlapping objects 
based on their intersection over union (IoU) and 
keeps only the best scoring.

During inference, we also collect all available 
metadata relevant to each identi!ed boulder. This 
is currently log!le name/path, id, position, con!-
dence and »pseudo«-area. The »pseudo«-area is 
calculated as the area covered by the estimated 
segmentation mask and is for sorting purposes 
assumed to correlate with the actual size of the 
boulder. From the metadata, human operators 
can further !lter and sort the outputs to obtain 
the desired output. Finally, the information can be 
compiled into a report, e.g., as CSV or PDF !les.

For the input shown in Fig. 4, the time used for 
the complete processing steps from input to out-
put on a single GPU is 13 s. The input has a length 
of 200  m, a width of 80  m and a resolution of 
0.1 m/px. The amount of identi!ed boulders does 
not a"ect the processing time.

4.3 Comparison against human-annotated data
To provide quantitative metrics on the perfor-
mance of our model, we compare the targets 
found by our model against the human-annotated 
targets on our test data set. Table 1 shows the ac-
curacy with which our model identi!es targets an-
notated in the test data set, i.e., the proportion of 
annotated targets the model correctly identi!es. 
Since our model further identi!es many targets 
beyond the annotated targets, we also provide 
the accuracy of these being correct, i.e., the pro-
portion of correctly identi!ed non-annotated tar-
gets. The model gain denotes the gain or increase 
in identi!ed targets compared to the number of 
annotated targets, e.g., a gain value of × 62 refers 
to the model identifying × 62 more targets than 
have been annotated. Finally, we report the pro-
cessing speed as a measure of metre per second 
using a single GPU and time spend on generat-
ing segmentation masks using human annotators 
and our model. We note that these measures are 
an average over our test data set collected using 
a window stride of 100 px and are not entirely 
representative. They are more dependent on sen-
sor/vehicle/data parameters than the number of 
boulders identi!ed. The column »Non-!ltered« de-
notes that all outputs from the model have been 
used without modi!cation, and »Filtered« refers to 
the outputs being !ltered. The !ltering is currently 
removing identi!ed boulders with an area smaller 
than the smallest of the annotated targets.

In Fig. 5, we show representative examples of 
the di"erent cases, which is the basis for the met-
rics reported in Table 1. True positives, annotated 
or non-annotated, are shown as masks that cap-
ture targets’ shapes (boulder and shadow) with 
high accuracy. We note that the estimated masks 
typically enclose the objects better than our an-
notated masks (shown in faded white as overlay). 
False positives, annotated or non-annotated, are 
shown as objects only partly identi!ed or by es-
timated masks that do not cover any objects. We 
note that false positives relate mostly to small ar-
eas, further supported by the increase in accuracy 
of the !ltered metrics as shown in Table 1.

5 Conclusion
We have presented our preliminary work on au-
tomatic boulder identi!cation in side-scan so-
nar data. With our method, we currently identify 
prominent boulders by estimating a segmentation 
mask that accurately captures the entire area of the 
boulder and its shadow. As our model is based on 

Test data set Non-)ltered Filtered

Accuracy (annotated vs. identi!ed) 91.7 % 91.7 %

Accuracy (non-annotated vs. identi!ed) 87.8 % 94.8 %

Model gain (annotated vs. identi!ed) × 62 × 27

Human Model (stride = 100 px)

Average processing speed 0.5 m/s 22 m/s

Average time per boulder 21.7 s 0.1 s

Table 1: Comparison of accuracy and performance on the test data set. 
See section 4.3 for details on the metrics presented

Fig. 5: Representative samples from the test data set. True 
positives have masks that capture the shape of targets 
(boulder and shadow) with high accuracy. False positives fail 
to capture the entire object or estimate objects at positions 
where there are none. Annotated masks are shown in faded 
white as an overlay. Each example has been resized, and 
sizes are therefore not relative to each other
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instance segmentation, we retrieve and analyse 
each boulder separately to provide each detected 
target with metadata used for !ltering, sorting and 
report generation purposes. Using only a single 
GPU, our model can process several kilometres of 
side-scan data and identify thousands of boulders 
in less than a minute. We envision that even in its 
current state, our presented work has the potential 
to drastically reduce the e"ort of industry profes-
sionals even if human-in-the-loop is still required 
to some extent.

6 Future work
In improving our method, several steps may be 
considered. To improve the accuracy, we can use 
our current model to label our entire data set of 
more than 1500 km side-scan sonar data in a semi-
supervised manner. This potentially generates mil-
lions of annotated boulders to retrain on instead 
of the 1300 targets used for this work. To report 

more accurate measures on size (width, height, 
length), the segmentation masks may be ex-
tended to separate the currently estimated masks 
into a boulder and shadow area. Our model ar-
chitecture readily supports this addition and thus 
only needs labels for learning. Finally, for accurate 
side-scan object positioning, we currently assume 
a $at seabed, and to remove duplicate identi!ca-
tions on separate side-scan lines with overlap, we 
must assume good navigation. To mitigate these 
assumptions, either post-processed mosaics must 
be used (already supported), or further work may 
investigate cross-referencing data points with ac-
curate bathymetry from, e.g., multibeam echo 
sounders. //
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